Recombinant expression of the *Trypanosoma cruzi* serino peptidase inhibitor ISP2, homologous to the bacterial ecotin

Max M. Fuhlendorf¹, Juliete V. dos Santos¹, Aline D. Cabral¹, Bernard R. C. de Resende¹, Luciano Puzer¹ and Márcia A. Sperança¹

1. Center for Natural and Human Sciences, Universidade Federal do ABC, Campus São Bernardo do Campo, São Bernardo do Campo, São Paulo, Brazil.

Chagas' disease, though efficiently contained in Brazil by vector control programs, still has a worrying incidence, especially among the precarious new population centers forming in recently denuded areas of Amazon rainforest. Its etiological agent, *Trypanosoma cruzi*, has a gene that codes for a serine peptidase inhibitor (ISP), an ecotin homolog. Ecotin is an ISP found in *E. coli* and various other genera of gram negative bacteria. A growing number of studies indicate that ecotin producing bacteria, especially those that invade arthropod and vertebrate tissues, use it as a main line of defense against host immune systems. Recent evidence also shows ISPs synthesized by *Leishmania major* — an organism that belongs to a sister taxon of *T. cruzi* and whose ISPs are also ecotin homologous — also have exogenous targets, enhancing parasite survival when encountering the host's immune defenses. Tracing parallels between studies of ecotin producing bacteria and recent research into *L. major* ISPs, it becomes clear how pervasive is the effect of these serino proteases in modulating hosts' immune responses. The characterization of *T. cruzi*'s ISP, which is the main objective of this research proposal, is thus an important step in determining the biomolecular details of host-parasite interactions, and has the potential to lead to new methods of fighting Chagas' disease. Amplification of the *T. cruzi* ISP2 encoding sequence was performed by PCR from DNA extracted from the Y reference strain. PCR fragment was cloned into the pET28a bacterial expression vector and the recombinant *T. cruzi* ISP2 protein was present in soluble bacterial extract fraction. After purification by niquel affinity chromatography, recombinant *T. cruzi* ISP2 will be tested for serological diagnosis and as a molecular target for the development of new drugs.

Key words: *Trypanosoma cruzi*, serine peptidase inhibitors, recombinant protein expression

Support: FAPESP, CNPq (PIBIC to MMF), and UFABC.